Abstract

The use of enzymes for the asymmetric reduction of activated C=C double bonds is a viable and straightforward alternative to chiral hydrogenation. The number of isolated and characterised double bond reductases (ENEs) has grown significantly over the past fifteen years and the use of this enzyme class in organic synthesis has increased accordingly. In this article we examine the ENE-catalysed reduction of a number of activated alkenes using enzymes from Johnson Matthey’s collection. These reductions proved to be scalable: they can be run at high substrate concentration, delivering the reduced product in high yield and high chemical purity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call