Abstract

Cell-mediated reduction of tetrazolium salts, including MTT, XTT, MTS, NBT, NTV, INT, in the presence or absence of intermediate electron carriers is used as a convenient test for animal or bacterial cell viability. Bioreduction of tetrazolium is considered an alternative to a clonogenic assay and a thymidine incorporation assay. However, correlation between clonogenic potential and capacity to reduce tetrazolium has not been demonstrated convincingly. Moreover, despite a wide use of tetrazolium viability assays, the mechanism and subcellular localisation of reducing systems or species in viable intact cells have not been fully elucidated. We report evidence indicating that a tetrazolium salt CTC can be reduced in the presence as well as in the absence of an electron carrier by viable HepG2 human hepatoma cells. CTC-formazan is formed within or at the outer surface of plasma membranes. We hypothesise that in the presence of an electron carrier the electron donors active in the reduction of CTC are located in the intracellular compartment, as well as in plasma membranes. However, in the absence of an electron carrier, the reduction occurs primarily via a plasma membrane-associated enzymatic system or species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.