Abstract

The reduction of a redox-active ligand is shown to drive reversible switching of a Cu(I) [2]pseudorotaxane ([2]PR(+)) into the reduced [3]pseudorotaxane ([3]PR(+)) by a bimolecular mechanism. The unreduced pseudorotaxanes [2]PR(+) and [3]PR(2+) are initially self-assembled from the binucleating ligand, 3,6-bis(5-methyl-2-pyridine)-1,2,4,5-tetrazine (Me(2)BPTZ), and a preformed copper-macrocycle moiety (Cu-M(+)) based on 1,10-phenanthroline. X-ray crystallography revealed a syn geometry of the [3]PR(2+). The UV-vis-NIR spectra show low-energy metal-to-ligand charge-transfer transitions that red shift from 808 nm for [2]PR(+) to 1088 nm for [3]PR(2+). Quantitative analysis of the UV-vis-NIR titration shows the stepwise formation constants to be K(1) = 8.9 x 10(8) M(-1) and K(2) = 3.1 x 10(6) M(-1), indicative of negative cooperativity. The cyclic voltammetry (CV) and coulometry of Me(2)BPTZ, [2]PR(+), and [3]PR(2+) shows the one-electron reductions at E(1/2) = -0.96, -0.65, and -0.285 V, respectively, to be stabilized in a stepwise manner by each Cu(+) ion. CVs of [2]PR(+) show changes with scan rate consistent with an EC mechanism of supramolecular disproportionation after reduction: [2]PR(0) + [2]PR(+) = [3]PR(+) + Me(2)BPTZ(0) (K(D)*, k(d)). UV-vis-NIR spectroelectrochemistry was used to confirm the 1:1 product stoichiometry for [3]PR(+):Me(2)BPTZ. The driving force (DeltaG(D)* = -5.1 kcal mol(-1)) for the reaction is based on the enhanced stability of the reduced [3]PR(+) over reduced [2]PR(0) by 365 mV (8.4 kcal mol(-1)). Digital simulations of the CVs are consistent with a bimolecular pathway (k(d) = 12 000 s(-1) M(-1)). Confirmation of the mechanism provides a basis to extend this new switching modality to molecular machines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call