Abstract
Abstract The reduction-degree of the sample increases and the utilization ratio of gas decreases when the reaction lasts longer time, which indicates that the reaction is faster at the beginning of reduction, while it becomes slower in subsequent process. The higher the reaction temperature, the higher the utilization ratio of gas and the reduction-degree are, but the difference of utilization ratio among the different temperatures becomes smaller with time. The utilization ratio of gas can reach about 8% and the reduction-degree is 80% for 20 min reduction at 850 °C, indicating that the reduction reaction by CO is very fast at high temperature. The higher the reaction temperature, the higher the apparent reaction rate constant is, but the difference of apparent reaction rate constant among the different temperatures becomes bigger. The apparent activation energy is about 59.11 kJ/mol in the fluidized bed experiment. The increase of reduction-degree with gas velocity shows quite good linearity, indicating that at high temperature even higher velocity of reducing gas can be used to improve the productivity of reactor when CO is used as reducing gas. With the increase of charge height, the metallization ratio and the reduction-degree decrease, but the utilization ratio of gas increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.