Abstract

Lorentzian distributions have been largely employed in statistical mechanics to obtain exact results for heterogeneous systems. Analytic continuation of these results is impossible even for slightly deformed Lorentzian distributions due to the divergence of all the moments (cumulants). We have solved this problem by introducing a "pseudocumulants" expansion. This allows us to develop a reduction methodology for heterogeneous spiking neural networks subject to extrinsic and endogenous fluctuations, thus obtaining a unified mean-field formulation encompassing quenched and dynamical sources of disorder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call