Abstract

3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is a nicotinamide adenine dinucleotide (NADH)-specific flavoprotein monooxygenase involved in microbial aromatic degradation. The enzyme catalyzes the para hydroxylation of 3-hydroxybenzoate (3-HB) to 2,5-dihydroxybenzoate (2,5-DHB), the ring-fission fuel of the gentisate pathway. In this study, the kinetics of reduction of the enzyme-bound flavin by NADH was investigated at pH 8.0 using a stopped-flow spectrophotometer, and the data were analyzed comprehensively according to kinetic derivations and simulations. Observed rate constants for reduction of the free enzyme by NADH under anaerobic conditions were linearly dependent on NADH concentrations, consistent with a one-step irreversible reduction model with a bimolecular rate constant of 43 ± 2 M(-1) s(-1). In the presence of 3-HB, observed rate constants for flavin reduction were hyperbolically dependent on NADH concentrations and approached a limiting value of 48 ± 2 s(-1). At saturating concentrations of NADH (10 mM) and 3-HB (10 mM), the reduction rate constant is ~51 s(-1), whereas without 3-HB, the rate constant is 0.43 s(-1) at a similar NADH concentration. A similar stimulation of flavin reduction was found for the enzyme-product (2,5-DHB) complex, with a rate constant of 45 ± 2 s(-1). The rate enhancement induced by aromatic ligands is not due to a thermodynamic driving force because Em 0 for the enzyme-substrate complex is -179 ± 1 mV compared to an E(m)(0) of -175 ± 2 mV for the free enzyme. It is proposed that the reduction mechanism of 3HB6H involves an isomerization of the initial enzyme-ligand complex to a fully activated form before flavin reduction takes place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.