Abstract

In the scenario of first laser communication relay satellite being launched into geostationary earth orbit, we evaluate the reduction in transmitter power requirement for earth-to-satellite and satellite-to-earth free space optical links in presence of turbulence and various weather conditions using spatial diversity technique. In channel modeling, Beer Lambert Law incorporates the weather effects. The log-normal probability density function (pdf) models weak turbulence and gamma–gamma pdf moderate to strong turbulence. Using the combined channel state pdf, bit error rate (BER) expressions are derived for on-off keying (OOK), M-ary pulse position modulation (M-PPM) and M-ary differential PPM (M-DPPM) schemes. From the BER plots, we evaluate the minimum average received power required to achieve a desired BER for all three schemes for different channel conditions. Subsequently, minimum transmitter power requirement is evaluated for both uplink and downlink using the range equation. It is observed that presence of moderate, light and thin fog cause additional power requirement. Also, among the three schemes, M-PPM scheme requires the least transmitter power, followed by M-DPPM and OOK schemes. Further, it is seen that the transmitter diversity or multiple input single output technique reduces the uplink minimum transmitter power requirement, whereas for downlink aperture averaging and receiver diversity or single input multiple output techniques can achieve the same. The power requirement for uplink is 8–10 dB more as compared to downlink in presence of turbulence and various weather conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call