Abstract

The time taken to exchange a cutting tool and the actual machining time are the components in a total production cycle time for a part, that affects productivity. Automated plate exchange systems strive for the simplest possible principles to achieve the shortest possible tool exchange time with sufficient accuracy. The tool holder in the presented article is based on the principle of a combination of translational, rotational movement, and stop surfaces by using a single pull–push rod for simple control. The article provides alternative tool holder designs and turning results of such holders using Rz-f dependence. The results of the time reduction are satisfactory and give a prerequisite for using a tool holder for the automated exchange of triangular cutting inserts. Moreover, the article provides the approach to reduce the mentioned total production cycle time by a reduction in the actual machining time for a part by use of tooltip radii, not by increasing the cutting speed. The triangular cutting insert can have three tooltips of three different tooltip radii for roughing and finishing. In addition, for reduction of the actual machining time, the double cutting tool with both the small tooltip radius for rouging and the large tooltip radius for finishing is presented. The double tool holders showed a 2.4-times reduction in the actual machining time for a part with Rz = 20 µm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call