Abstract

The semi-bridgeless power factor correction (PFC) rectifier is widely used due to its high power factor, high efficiency, and low electromagnetic interference. However, in this rectifier, the inductor current will flow through the body diode of the metal–oxide–semiconductor field-effect transistor (MOSFET) when the MOSFET does not work, causing a problem in detecting the inductor current. Consequently, the current transformers are generally used as current sensors. This means that using many current sensors will make the cost and the peripheral detection circuit complicated. In this paper, our new method is to use a gallium nitride field-effect transistor (GaNFET) to replace the metal–oxide–semiconductor field-effect transistor (MOSFET) in the main switch selection. The reverse-biased conduction voltage of the third quadrant of the GaNFET is higher than the forward-biased conduction voltage of the diode, which solves the problem in detecting the inductor current, reduces the number of current sensors, and simplifies the corresponding peripheral circuits and components. Eventually, via mathematical deduction and hardware implementation, a semi-bridgeless PFC prototype with a GaNFET was built to verify the effectiveness of the proposed structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.