Abstract

This paper considers the issues of the reduction in the computational complexity of the numerical problem and the requirements of the computer memory size when calculating the power of the eddy currents in a hydrogen fuel cell based on a proton exchange membrane. The study was performed on a model problem based on a geometric pattern of a hydrogen fuel cell of typical dimensions and characteristics operating at a nominal load in steady-state conditions. The power of the eddy currents was calculated using a numerical model based on a tetrahedral finite element mesh and a mathematical model of a quasi-stationary electromagnetic field in the classical formulation through the vector magnetic potential. The requirements for the minimum degree of the geometric model approximation by a finite element mesh to achieve mesh stability of the computational problem results were defined. The paper considers issues of finite element order selection, the method of ordering, and the solution of the systems of linear algebraic equations (SLAEs). It shows the techniques for determining the accuracy of the calculated SLAE solution obtained by the direct method, as well as the effectiveness of the low-rank approximation of the SLAE to reduce the computational complexity of the computational problem solution and reduce the requirements for the amount of computer memory needed, considering the reduced accuracy of the SLAE solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call