Abstract

Attrition milling is an easily scalable and environmentally friendly process used to produce Ca3Co4O9+δ nanoprecursors in a relatively short time. Sintered materials produced through the classical solid-state method, involving ball milling, show much larger grain sizes and slightly lower density than those obtained in samples produced from attrition-milled precursors. On the other hand, electrical resistivity has been drastically decreased, accompanied with a slight decrease in the Seebeck coefficient in samples obtained from these attrition-milled precursors. Moreover, the use of an attrition milling process leads to a very important reduction in processing time (around 75%), together with a slight power factor improvement of around 10%, when compared to the classically prepared samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.