Abstract

Background: The etiology of intradialytic hemodynamic instability is multifactorial. Of the various factors involved, a rise in core temperature seems to be crucial. In this respect, the bioincompatibility of hemodialysis (HD) treatment might play an important role. The application of cool dialysate reduces the number of periods of intradialytic hypotension (IDH) considerably. In rats, roller pump perfusion caused hypotension by shear stress induced platelet aggregation and subsequent serotonin release. During clinical HD, citrate anticoagulation abolished platelet activation almost completely. Hence, citrate anticoagulation might reduce IDH, whereas the beneficial effect of cool dialysate might be partly explained by reduced platelet activation. Methods: In the present study, blood pressure, IDH episodes, platelet activation, platelet aggregation, and serotonin release were studied crossover in 10 patients during HD with dalteparin anticoagulation at normal and low dialysate temperatures and during HD with citrate. Results: Citrate strongly reduced platelet activation, but did not improve IDH. The blood pressure was best preserved during cool-temperature HD, despite manifest platelet activation. Platelet activation was not accompanied by a rise in the plasma serotonin concentration. Conclusions: Three major conclusions can be drawn: (1) it is unlikely that platelet activation and subsequent serotonin release underlie IDH in the clinical situation; (2) the protective effects of cool dialysate on IDH appear to be independent of HD-induced platelet activation, and (3) extrapolating results from rat experiments to the human situation requires uppermost prudence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.