Abstract
Mild hypothermia is a robust neuroprotectant, and the results of prospective clinical trials have indicated that it may improve neurological outcome in certain instances. One aspect of this protection has been associated with the prevention of blood-brain barrier (BBB) disruption. Matrix metalloproteinases (MMPs) have been implicated in BBB disruption because they can degrade the extracellular matrix. In this study the authors explored the relationship between hypothermia and MMPs and whether BBB preservation resulting from mild hypothermia therapy is due to alterations in MMP expression. Rats were subjected to middle cerebral artery occlusion for 2 hours; the animals were maintained in a state of normothermia or mild hypothermia (33 degrees C) immediately after the onset of ischemia. The animals' brains were collected 2, 6, and 24 hours after ischemia began. Contrast-enhanced T1-weighted magnetic resonance imaging was performed at 24 hours to assess the extent of BBB disruption. Consistent with prior reports, areas of BBB disruption detected on T1-weighted images were smaller in the brains of rats maintained in a state of hypothermia (normothermia group 8.6 +/- 3% of the brain; hypothermia group 0.2 +/-0.1% of the brain; p < 0.01). Expression of both MMP-2 and MMP-9 at the transcriptional and translational levels was reduced in hypothermic brains at 6 hours and 24 hours after ischemic injury. Matrix metalloproteinase-9 was primarily localized to cells of monocytic origin but was also observed in neurons and astrocytes. Matrix metalloproteinase-2 was found in some neurons and astrocytes but not in inflammatory cells. In addition, hypothermia increased the levels of the endogenous MMP inhibitor, tissue inhibitor of metalloproteinases-2. The authors conclude that mild hypothermia attenuates BBB disruption, decreases MMP expression, and suppresses MMP activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.