Abstract

Frataxin protein controls iron availability in mitochondria and reduced levels lead to the human disease, Friedreich's ataxia (FRDA). The molecular aspects of disease progression are not well understood. We developed a highly regulatable promoter system for expressing frataxin in yeast to address the consequences of chronically reduced amounts of this protein. Shutting off the promoter resulted in changes normally associated with loss of frataxin including iron accumulation within the mitochondria and the induction of mitochondrial petite mutants. While there was considerable oxidative damage to mitochondrial proteins, the petites were likely due to accumulation of mitochondrial DNA lesions and subsequent DNA loss. Chronically reduced frataxin levels resulted in similar response patterns. Furthermore, nuclear DNA damage was detected in a rad52 mutant, deficient in double-strand break repair. We conclude that reduced frataxin levels, which is more representative of the disease state, results in considerable oxidative damage in both mitochondrial and nuclear DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call