Abstract
A weak asymptotic limit is proposed for a charged field as an operator on the space of asymptotic states. This leads to a modified Lehmann-Symanzik-Zimmermann reduction formula and a determination of the singularity near the mass shell of the Green's function of a charged particle in the presence of other charged particles. Coherent states of the electromagnetic field are also reduced out. The resultant expression for $S$-matrix elements in terms of vacuum expectation values of time-ordered fields yields a slight elaboration of the Feynman rules which allows a perturbative calculation that is free of infrared and Coulombic divergences order by order. As an application, the amplitude for scattering of a Dirac particle by an external Coulomb potential is calculated to second order in the external potential, with a finite result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.