Abstract

The occurrence of hydrocephalic macrocephaly is uncommon. When the condition does occur, it is usually seen in infants and young children. Patients with this disorder have an excessively enlarged head and weak physical conditions. Various surgical techniques of reduction cranioplasty for the treatment of these patients have been reported. In this study, a revised surgical procedure with the aid of simulated computer imaging for the treatment of hydrocephalic macrocephaly is presented. Five cases of hydrocephalic macrocephaly in children ranging in age from 16 to 97 months were reviewed. These patients underwent surgical treatment at The First Affiliated Hospital of Xiamen University over a period of 4 years from January 2007 to January 2011. After physical examination, a 3D computer imaging system to simulate the patient's postoperative head appearance and bone reconstruction was established. Afterward, for each case an appropriate surgical plan was designed to select the best remodeling method and cranial shape. Then, prior to performing reduction remodeling surgery in the patient according to the computer-simulated procedures, the surgeon practiced the bone reconstruction technique on a plaster head model made in proportion to the patient's head. In addition, a sagittal bandeau was used to achieve stability and bilateral symmetry of the remodeled cranial vault. Each patient underwent follow-up for 6-32 months. Medium-pressure ventriculoperitoneal shunt surgery or shunt revision procedures were performed in each patient for treating hydrocephalus, and all patients underwent total cranial vault remodeling to reduce the cranial cavity space. Three of the 5 patients underwent a single-stage surgery, while the other 2 patients underwent total cranial vault remodeling in the first stage and the ventriculoperitoneal shunt operation 2 weeks later because of unrecovered hydrocephalus. All patients had good outcome with regard to hydrocephalus and macrocephaly. There are still no standard surgical strategies for the treatment of hydrocephalic macrocephaly. Based on their experience, the authors suggest using a computer imaging system to simulate a patient's postoperative head appearance and bone reconstruction together with total cranial vault remodeling with shunt surgery in a single-stage or 2-stage procedure for the successful treatment of hydrocephalic macrocephaly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call