Abstract

In materials science, “green” synthesis has gotten a lot of interest as a reliable, long-lasting, and ecofriendly way to make a variety of materials/nanomaterials, including metal/metal oxide nanomaterials. To accommodate various biological materials, green synthesis of metallic nanoparticles has been used (e.g., bacteria, fungi, algae, and plant extracts). In this work, Shewanella oneidensis MR-1 was used to biosynthesize palladium nanoparticles (bioPd) under aerobic conditions for the Cr(VI) bio-reduction. The size and distribution of bio-Pd are controlled by adjusting the ratio of microbial biomass and palladium precursors. The high cell: Pd ratio has the smallest average particle size of 6.33 ± 1.69 nm. And it has the lowest electrocatalytic potential (−0.132 V) for the oxidation of formic acid, which is 0.158 V lower than commercial Pd/C (5%). Our results revealed that the small size and uniformly distributed extracellular bio-Pd could achieve completely catalytic reduction of 200 mg/L Cr(VI) solution within 10 min, while the commercial Pd/C (5%) need at least 45 min. The bio-Pd materials maintain a high reduction during five cycles. Microorganisms play an important role in the whole process, which can fully disperse palladium nanoparticles, completely reduce Cr(VI), and effectively adsorb Cr(III). This work expands our understanding and provides a reference for the design and development of efficient and green bio-Pd catalysts for environmental pollution control under simple and mild conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.