Abstract

In this paper, a variable-coefficient KdV equation in a fluid, plasma, anharmonic crystal, blood vessel, circulatory system, shallow-water tunnel, lake or relaxation inhomogeneous medium is discussed. We construct the reduction from the original equation to another variable-coefficient KdV equation, and then get the rational, periodic and mixed solutions of the original equation under certain constraint. For the original equation, we obtain that (i) the dispersive coefficient affects the solitonic background, velocity and amplitude; (ii) the perturbed coefficient affects the solitonic velocity, amplitude and background; (iii) the dissipative coefficient affects the solitonic background, and there are different mixed solutions under the same constraint with the dispersive, perturbed and dissipative coefficients changing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.