Abstract

Researchers used column and flume experiments with uniform silica sand with and without suspended solids to examine the extent and longevity of hydraulic conductivity reduction (HCR) resulting from three anionic polyacrylamide (PAM) application methods, liquid injection, slurry surface, and granular surface application. Low turbidity (0.4 NTU) liquid injection column tests showed 20–65% HCR, likely caused by an extensional viscosity mechanism. HCR increased as turbidity increased, especially at low PAM concentrations. High turbidity (100 NTU) liquid injection column tests showed 66–77% HCR, likely through surficial PAM–clay aggregate filtration. Column and adsorption tests strongly suggest PAM–sand adsorption does not cause substantial HCR. In low turbidity flume tests, PAM slurry application to the sand surface produced up to 100% HCR, likely through a viscosity mechanism, and granular application to the media surface produced up to 100% HCR, likely through fixed surficial polymer gel formation. Hydraulic conductivity returned to control-adjusted pretreatment levels following PAM application in all tests except granular surface application at high mass loads or with high turbidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.