Abstract

On-line signature recognition is an area of growing interest in recent years due to the massive deployment of high-quality digitising tablets, smartphones, and tablets in many commercial sectors such as banking. In addition, handwritten signature is one of the most socially accepted biometric traits as it has been used in financial and legal agreements for over a century. In this current environment for signature biometrics, the number of stored samples or templates per user can grow very fast, making it possible to train more robust statistical user models, improving the performance of the biometric systems and in particular reducing the template ageing effect. This study carries out an exhaustive experimental analysis of template update strategies for three well-known on-line signature verification approaches, extracts various practical findings related to the template ageing effect in signature biometrics, and configures time-adaptive improved versions of the considered baseline approaches overcoming to some extent the template ageing. The proposed improved approach achieves system performances of 2.1 and 0.2% equal error rate for skilled and random forgery cases, respectively. These results show the efficacy of the proposed methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.