Abstract

The work reported herein details the synthesis, as well as the photophysical and photochemical investigation, of novel benzophenone-based photosensitive alkoxyamines for potential application in nitroxide-mediated photopolymerization. As benzophenone has found widespread application in photosensitive alkoxyamines, serving as an intramolecular photosensitizer, the deleterious effects of competitive excited state hydrogen atom abstraction processes are examined. In order to reduce the efficiency of excited state hydrogen atom abstraction processes, electron donating methoxy and pyrrolidine substituents were incorporated para to benzophenone’s carbonyl moiety to modulate the excited state character of the substituted benzophenone motifs. Whilst the incorporation of electron donating substituents reduced the efficiency of excited state hydrogen atom abstraction processes, this did not translate into increased photo-dissociation efficiencies. Greater photo-dissociation efficiencies were obtained for benzophenone-based alkoxyamines lacking the electron donating functionalities. The excited state character of the benzophenone moiety is therefore a key parameter governing both the hydrogen atom abstraction and photo-dissociation efficiencies of benzophenone-based photosensitive alkoxyamines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.