Abstract

Chemical absorption is widely regarded as the most promising technology for CO2 capture from large industrial sources in the short term. The cost of CO2 capture from postcombustion power plants using monoethanolamine (MEA), the benchmark for chemical absorption, is currently over US$70 per metric ton of CO2 avoided. This high cost is considered as the major obstacle to current large-scale implementation of carbon capture and storage (CCS). Thus, there has been significant focus on the development of new solvents with the aim to reduce costs. This paper provides insights into the impact of solvent properties on the cost of capture to assist in the development of new solvents based on a 500 MW supercritical black coal power plant as the emission source. The effect of solvent properties, specifically solvent loading, heat of reaction, solvent loss, and solvent concentration is examined. The effect of improvements in process design, specifically high pressure stripper operation, advanced structured packing, u...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.