Abstract
In this paper, we study the physical layer multicasting to multiple co-channel groups in large-scale antenna systems. The users within each group are interested in a common message and different groups have distinct messages. In particular, we aim at designing the precoding vectors solving the so-called quality of service (QoS) and weighted max-min fairness (MMF) problems, assuming that the channel state information is available at the base station (BS). To solve both problems, the baseline approach exploits the semidefinite relaxation (SDR) technique. Considering a BS with $N$ antennas, the SDR complexity is more than $\mathcal {O}(N^{6})$ , which prevents its application in large-scale antenna systems. To overcome this issue, we present two new classes of algorithms that, not only have significantly lower computational complexity than existing solutions, but also largely outperform the SDR-based methods. Moreover, we present a novel duality between transformed versions of the QoS and the weighted MMF problems. The duality explicitly determines the solution to the weighted MMF problem given the solution to the QoS problem, and vice versa. Numerical results are used to validate the effectiveness of the proposed solutions and to make comparisons with existing alternatives under different operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.