Abstract

Tetracycline antibiotics (TCs) are massively produced and consumed in various industries resulting in large quantities of residuals in the environment. In this study, to achieve safe and efficient removal of residual TCs, a Pichia pastoris (P. pastoris) was gained to stably express glycosylated TCs degrading enzyme Tet(X) followed codon and expression parameter optimization of tet(X4). As expected, glycosylated Tet(X) still maintains efficient capacity of degrading TCs. The expressed Tet(X) maintained efficient TCs degrading ability over a pH range of 6.5 – 9.5 and temperature range of 17 – 47 °C. We tested this recombinant protein for its ability to degrade tetracycline in pond water and sewage models of tetracycline removal at starting levels of 10 mg/L substrate. 80.5 ± 3.8% and 26.2 ± 2.6% of tetracycline was degraded within 15 min in the presence of 0.2 μM Tet(X) and 50 μM NADPH, respectively. More importantly, the direct use of a Tet(X) degrading enzymes reduces the risk of gene transmission during degradation. Thus, the Tet(X) degrading enzyme expressed by P. pastoris is an effective and safe method for treating intractable TCs residues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.