Abstract
Multiplication operators defined on function spaces have been receiving enormous attention from both operator-theoretic and function-theoretic experts. One of the problems is to study reducing subspaces of them. The one-variable case has obtained fruitful remarkable results. However, little has been done in the multi-variable case. Under the setting of the Bergman space \(L_a^2 (\mathbb{D}^2 )\), this paper addresses those multiplication operators M p defined by special polynomials p, where p(z,w) = αz k +βw l , α, β ∈ ℂ. Those reducing subspaces of M p are completely determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.