Abstract

The direct simulation Monte Carlo (DSMC) method is widely utilized to simulate microscopic dynamic processes in dispersed systems that give rise to the population balance equation. In conventional DSMC approaches, simulation particles are equally weighted, even for broad size distributions where number concentrations in different size intervals are significantly different. The resulting statistical noise and limited size spectrum severely restrict the application of these DSMC methods. This study proposes a new Monte Carlo (MC) method, the differentially weighted time-driven method, which captures the coagulation dynamics in dispersed systems with low noise and is simultaneously able to track the size distribution over the full size range. Key elements of this method include constructing a new jump Markov process based on a new coagulation rule for two differentially weighted simulation particles, and restricting the number of simulation particles in each size interval within prescribed bounds. The method...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.