Abstract

This work demonstrates a method to prepare homogeneous distributions of analytes to improve data reproducibility in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Natural-air drying processes normally result in unwanted heterogeneous spatial distributions of analytes in MALDI crystals and make quantitative analysis difficult. This study demonstrates that inducing Marangoni flows within drying droplets can significantly reduce the heterogeneity problem. The Marangoni flows are accelerated by changing substrate temperatures to create temperature gradients across droplets. Such hydrodynamic flows are analyzed semi-empirically. Using imaging mass spectrometry, changes of heterogeneity of molecules with the change of substrate temperature during drying processes are demonstrated. The observed heterogeneities of the biomolecules reduce as predicted Marangoni velocities increase. In comparison to conventional methods, drying droplets on a 5 °C substrate while keeping the surroundings at ambient conditions typically reduces the heterogeneity of biomolecular ions by 65%-80%. The observation suggests that decreasing substrate temperature during droplet drying processes is a simple and effective means to reduce analyte heterogeneity for quantitative applications. Graphical Abstract ᅟ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.