Abstract
Current GPUs perform a significant amount of redundant shading when surfaces are tessellated into small triangles. We address this inefficiency by augmenting the GPU pipeline to gather and merge rasterized fragments from adjacent triangles in a mesh. This approach has minimal impact on output image quality, is amenable to implementation in fixed-function hardware, and, when rendering pixel-sized triangles, requires only a small amount of buffering to reduce overall pipeline shading work by a factor of eight. We find that a fragment-shading pipeline with this optimization is competitive with the REYES pipeline approach of shading at micropolygon vertices and, in cases of complex occlusion, can perform up to two times less shading work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.