Abstract

Strictness analysis is crucial for the efficient implementation of the lazy functional languages. A related technique for the concurrent logic languages (CLLs) called schedule analysis is presented which divides at compile-time a CLL program into threads of totally ordered atoms, whose relative ordering is determined at run-time. The technique enables the enqueuing and dequeuing of processes to be reduced, synchronisation tests to be partially removed, introduces the possibility of using unboxed arguments, and permits variables to be migrated from a heap to a stack to affect a form of compile-time garbage collection. The implementation is outlined and some preliminary results are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.