Abstract

Processing liquid chromatography-mass spectrometry-based metabolomics data using computational programs often introduces additional quantitative uncertainty, termed computational variation in a previous work. This work develops a computational solution to automatically recognize metabolic features with computational variation in a metabolomics data set. This tool, AVIR (short for "Accurate eValuation of alIgnment and integRation"), is a support vector machine-based machine learning strategy (https://github.com/HuanLab/AVIR). The rationale is that metabolic features with computational variation have a poor correlation between chromatographic peak area and peak height-based quantifications across the samples in a study. AVIR was trained on a set of 696 manually curated metabolic features and achieved an accuracy of 94% in a 10-fold cross-validation. When tested on various external data sets from public metabolomics repositories, AVIR demonstrated an accuracy range of 84%-97%. Finally, tested on a large-scale metabolomics study, AVIR clearly indicated features with computational variation and thus guided us to manually correct them. Our results show that 75.3% of the samples with computational variation had a relative intensity difference of over 20% after correction. This demonstrates the critical role of AVIR in reducing computational variation to improve quantitative certainty in untargeted metabolomics analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call