Abstract
The purpose of this study is to investigate the dosimetric accuracy of prostate SBRT when motion is considered. To account for target movement, motion compensation and gating techniques were investigated with PTV margins reduced to 2mm. To allow for dosimetric measurements a Delta4 phantom, Gafchromic film, and Hexamotion motion platform were utilized. Four motion files were utilized that represent a range of motions. Analysis of measured prostate motions for fifteen patients was performed to ensure detected motions were similar to those previously reported and motion files utilized were suitable. Five patient plans were utilized to allow for the effects of MLC and target motion interplay to be investigated. For both motion compensation and gating techniques, plans were delivered to the stationary phantom and for each of four motion types with/without compensation/gating enabled. Using a 3%, 2mm and 80% threshold gamma criteria, film measurements had an average pass rate of 80.5% for uncorrected deliveries versus 96.0% for motion compensated deliveries. For gated techniques average pass rates increased from 89.9% for uncorrected to 94.8% with gating enabled. Measurements with the Delta4 arrays were analyzed with a 3%, 2mm and 10% threshold dose. An average pass rate of 83.8% was measured for uncorrected motions versus 94.8% with motion compensation. For the gated technique an average pass rate of 87.2% was found for uncorrected motions versus 96.9% with gating enabled. These results show that very high gamma pass rates are achievable when motion compensation or gating techniques are applied. When target motion is not accounted for shifts up to 5mm in planned versus delivered isodose distributions were found. However, when motion compensation, or gated techniques were applied, much smaller differences between planned and delivered isodose distributions were found. With these techniques dose delivery accuracy is greatly improved, allowing for PTV margins to be reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.