Abstract
The design of many production and service systems is informed by stochastic model analysis. But the parameters of statistical distributions of stochastic models are rarely known with certainty, and are often estimated from field data. Even if the mean system performance is a known function of the model's parameters, there may still be uncertainty about the mean performance because the parameters are not known precisely. Several methods have been proposed to quantify this uncertainty, but data sampling plans have not yet been provided to reduce parameter uncertainty in a way that effectively reduces uncertainty about mean performance. The optimal solution is challenging, so we use asymptotic approximations to obtain closed-form results for sampling plans. The results apply to a wide class of stochastic models, including situations where the mean performance is unknown but estimated with simulation. Analytical and empirical results for the M/M/1 queue, a quadratic response-surface model, and a simulated critical care facility illustrate the ideas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Modeling and Computer Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.