Abstract

Algebraic multigrid (AMG) is an $\mathcal{O}(n)$ solution process for many large sparse linear systems. A hierarchy of progressively coarser grids which utilize complementary relaxation and interpolation operators is constructed. High-energy error is reduced by relaxation, while low-energy error is mapped to coarse-grid matrices and reduced there. However, large parallel communication costs often limit parallel scalability. As the multigrid hierarchy is formed, each coarse matrix is formed through a triple matrix product. The resulting coarse grids often have significantly more nonzeros per row than the original fine-grid operator, thereby generating high parallel communication costs associated with sparse matrix-vector multiplication (SpMV) on coarse levels. In this paper, we introduce a method that systematically removes entries in coarse-grid matrices after the hierarchy is formed, leading to improved communication costs. We sparsify by removing weakly connected or unimportant entries in the matrix, le...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call