Abstract

In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field, a purely electric wheel-side drive tractor was studied, including an electric motor drive system, a battery ballast system, and an electro–hydraulic suspension system. This paper develops a dynamics model of an electric tractor-ploughing unit under complex soil conditions, leading to the proposal of an active control method for drive wheel torque and a joint control method for the traction force of the suspension system and the front- and rear-axle loads of a tractor. Finally, the tractor is prototyped and assembled, and ploughing tests are carried out. The ploughing results show that the active torque-distribution control method proposed in this study reduces the tractor slip by 14.83% and increases the traction efficiency by 10.28% compared with the average torque-distribution mode. Compared with the conventional traction control mode, the joint control method for traction and ballast proposed in this paper results in a 3.7% increase in traction efficiency, a 15.05% decrease in slip, and a 4.9% reduction in total drive motor energy consumption. This study will help to improve the operation quality and traction efficiency of electric tractors in complex soil conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.