Abstract

Response of aquatic organisms to eutrophication have been well reported, while less studies are available for the recovery of eutrophic lakes following a reduction in the external loading, especially for systems where nitrogen is reduced but the phosphorus concentration is maintained high due to internal loading. Diatoms are nitrate (NO3-N) opportunists but can also use ammonium (NH4-N). They may, therefore, be more sensitive to nitrogen reduction than other algae that typically prefer NH4-N. We document the variations of nutrients and diatoms in subtropical, eutrophic Lake Taihu over 28 yr during which a reduction of the external loading resulted from lake management. According to the results of change point analysis, data on environmental variables were divided into two periods (P1: 1992–2006; P2: 2007–2019) with two different seasons (WS: Winter-Spring; SA: Summer-Autumn), respectively. Compared with P1-WS, the concentration of NH4-N decreased significantly whereas NO3-N showed no significant change in P2-WS. In contrast, NH4-N concentrations were low and showed no significant changes in P1-SA and P2-SA and NO3-N decreased significantly in the latter period. Accordingly, NO3-N: NH4-N mass ratios in P1-SA and P2-WS were all significantly higher than those in P2-SA and P1-WS, respectively. The biomass of WS diatom increased significantly and the timing of the peak biomass shifted from P1-SA to P2-WS since 2007. The SEM analysis showed that NO3-N was retained as a statistically significant predictor for diatom biomass in P1-SA and significant effects of windspeed, zooplankton and NH4-N on diatom biomass in P2-WS. Windspeed and zooplankton have further changed the biomass of diatoms in the case of declining inorganic nitrogen. We conclude that the magnitude of vernal suppression or stimulation of diatom assemblages has increased, concomitant with the variations of NH4-N and NO3-N: NH4-N mass ratios. Diatoms response to NH4-N or NO3-N is apparently changing in response to water temperature in this eutrophic shallow lake. Thus, parallel reductions in external nitrogen loading, along with variations in dominant inorganic nitrogen, will stimulate the growth of diatom and therefore increase the total biomass of phytoplankton in still high internal phosphorus loading, which is should be regarded as a good sign of restoration measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call