Abstract
On-body antennas for use in microwave imaging (MI) systems can direct energy around the body instead of through the body, thus degrading the overall signal-to-noise ratio (SNR) of the system. This work introduces and quantifies the usage of modern metal-backed RF absorbing foam in conjunction with on-body antennas to dampen energy flowing around the body, using both simulations and experiments. A head imaging system is demonstrated herein but the principle can be applied to any part of the body including the torso or extremities. A computational model was simulated numerically using Ansys HFSS. A physical prototype in the form of a helmet with embedded antennas was built to compare simulations with measured data. Simulations and measurements demonstrate that usage of such metal-backed RF-absorbing foams can significantly reduce around-body coupling from Transmit (Tx) and Receive (Rx) antennas by approximately 10dB. Thus, the overall SNR of the MI system can be substantially improved using this low-cost and affordable method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE journal of electromagnetics, RF and microwaves in medicine and biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.