Abstract

This study aimed to determine the effect of passive insulation versus external heating during recovery after a sprint-specific warm-up on thigh muscle temperature and subsequent maximal sprint performance. On three separate occasions, 11 male cyclists (age = 24.7 ± 4.2 yr, height = 1.82 ± 0.72 m, body mass = 77.9 ± 9.8 kg; mean ± SD) completed a standardized 15-min intermittent warm-up on a cycle ergometer, followed by a 30-min passive recovery period before completing a 30-s maximal sprint test. Muscle temperature was measured in the vastus lateralis at 1, 2, and 3 cm depth before and after the warm-up and immediately before the sprint test. Absolute and relative peak power output was determined and blood lactate concentration was measured immediately after exercise. During the recovery period, participants wore a tracksuit top and (i) standard tracksuit pants (CONT), (ii) insulated athletic pants (INS), or (iii) insulated athletic pants with integrated electric heating elements (HEAT). Warm-up increased Tm by approximately 2.5 °C at all depths, with no differences between conditions. During recovery, Tm remained elevated in HEAT compared with INS and CONT at all depths (P < 0.001). Both peak and relative power output were elevated by 9.6% and 9.1%, respectively, in HEAT compared with CONT (both P < 0.05). The increase in blood lactate concentration was greater (P < 0.05) after sprint in HEAT (6.3 ± 1.8 mmol·L(-1)) but not INS (4.0 ± 1.8 mmol·L(-1)) versus CONT (4.1 ± 1.9 mmol·L(-1)). Passive heating of the thighs between warm-up completion and performance execution using pants incorporating electrically heated pads can attenuate the decline in Tm and improve sprint cycling performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call