Abstract

Memory is a key parameter in embedded systems since both code complexity of embedded applications and amount of data they process are increasing. While it is true that the memory capacity of embedded systems is continuously increasing, the increases in the application complexity and dataset sizes are far greater. As a consequence, the memory space demand of code and data should be kept minimum. To reduce the memory space consumption of embedded systems, this paper proposes a control flow graph (CFG) based technique. Specifically, it tracks the lifetime of instructions at the basic block level. Based on the CFG analysis, if a basic block is known to be not accessible in the rest of the program execution, the instruction memory space allocated to this basic block is reclaimed. On the other hand, if the memory allocated to this basic block cannot be reclaimed, we try to compress this basic block. This way, it is possible to effectively use the available on-chip memory, thereby satisfying most of instruction/data requests from the on-chip memory. Our experiments with this framework show that it outperforms the previously proposed CFG-based memory reduction approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.