Abstract
We observe that typical programs exhibit highly regular read-after-read (RAR) memory dependence streams. To exploit this regularity, we introduce read-after-read memory dependence prediction. This technique predicts whether: 1) a load will access a memory location that a preceding load accesses and 2) exactly which this preceding load is. This prediction is done without actual knowledge of the corresponding memory addresses. We also present two techniques that utilize RAR memory dependence prediction to reduce memory latency. In the first technique, a load may obtain a value by naming a preceding load with which an RAR dependence is predicted. The second technique speculatively converts a series of LOAD/sub 1/-USE/sub 1/,...,LOAD/sub N/-USE/sub N/ chains into a single LOAD/sub 1/-USE/sub 1/...USE/sub N/ producer/consumer graph. Our techniques can be implemented as small extensions to the previously proposed read-after-write (RAW) dependence prediction-based speculative memory cloaking and speculative memory bypassing. Performance experimentation results of RAR-based techniques are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.