Abstract

Adaptive optics-optical coherence tomography (AO-OCT) allows for the three-dimensional visualization of retinal ganglion cells (RGCs) in the living human eye. Quantitative analyses of RGCs have significant potential for improving the diagnosis and monitoring of diseases such as glaucoma. Recent advances in machine learning (ML) have made possible the automatic identification and analysis of RGCs within the complex three-dimensional retinal volumes obtained with such imaging. However, the current state-of-the-art ML approach relies on fully supervised training, which demands large amounts of training labels. Each volume requires many hours of expert manual annotation. Here, two semi-supervised training schemes are introduced, (i) cross-consistency training and (ii) cross pseudo supervision that utilize unlabeled AO-OCT volumes together with a minimal set of labels, vastly reducing the labeling demands. Moreover, these methods outperformed their fully supervised counterpart and achieved accuracy comparable to that of human experts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.