Abstract

Surface passivation of organic–inorganic halide perovskites (OIHPs) is a crucial step to annihilate the surface defects and to control the deteriorated ion migration phenomenon. Here, we study the role of lead sulfate (PbSO4) as an effective passivator in OIHP single crystals (SCs). Using impedance spectroscopy, we evaluate the ion migration and electrical properties of lead sulfate-passivated methylammonium lead tri-bromide (MAPbBr3) SCs. We found that the low-frequency impedance response that is assigned to the ionic motion in the MAPbBr3 SC is strongly affected by the inorganic PbSO4 surface treatment. The activation energy corresponding to the ion migration of MAPbBr3 SC is increased from 0.28 to 0.36 eV after PbSO4 surface treatment. The temperature-dependent I–V hysteresis of the MAPbBr3 SCs upon PbSO4 passivation was also measured. We found that such PbSO4 surface treatment stabilizes the crystal surface and improves the hysteresis properties of the crystals at elevated temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call