Abstract

Block-wise access to data is a central theme in the design of efficient external memory (EM) algorithms. A second important issue, when more than one disk is present, is fully parallel disk I/O. In this paper we present a deterministic simulation technique which transforms parallel algorithms into (parallel) external memory algorithm. Specifically; we present a deterministic simulation technique which transforms coarse grained multicomputer (CGM) algorithms into external memory algorithms for the parallel disk model. Our technique optimizes block-wise data access and parallel disk I/O and, at the same time, utilizes multiple processors connected via a communication network or shared memory. We obtain new improved parallel external memory algorithms for a large number of problems including sorting, permutation, matrix transpose, several geometric and GIS problems including 3D convex hulls (2D Voronoi diagrams), and various graph problems. All of the (parallel) external memory algorithms obtained via simulation are analyzed with respect to the computation time, communication time and the number of I/Os. Our results answer to the challenge posed by the ACM working group on storage I/O for large-scale computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.