Abstract

A current method to locate sites of N-linked glycosylation on a protein involves the identification of deamidated sites after releasing the glycans with peptide-N-glycosidase F (PNGase F). PNGase F deglycosylation converts glycosylated Asn residues into Asp. The 1-Da mass tag created by this process is observable by liquid chromatography-tandem mass spectrometry analysis. A potential interference to this method of N-glycosylation site mapping is the chemical deamidation of Asn residues, which occurs spontaneously and can result in false positives. Deamidation is a pH-dependent process that results in the formation of iso-Asp (i-Asp) and native Asp (n-Asp) by a succinimide intermediate, whereas PNGase F deglycosylation results in the conversion of the glycosylation Asn residue into n-Asp. N-linked glycosylation sites can thus be identified by the presence of a single chromatographic peak corresponding to an n-Asp residue within the consensus sequence Asn-X-Ser/Thr, whereas sites of deamidation led to 2 chromatographic peaks resulting from the presence of n-Asp and i-Asp. The intent of this study is to alert investigators in the field to the potential and unexpected errors resulting from this phenomenon and to suggest a strategy to overcome this pitfall and limit the number of false-positive identifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call