Abstract

Honeycombs are widely used to laminarize fluid streams by inhibiting the lateral components of the fluctuating velocity. However, they also produce additional turbulence by themselves due to the formation of large-scale instabilities and the breakup of the individual velocity profiles stemming from the honeycomb cells. In the present research, we use 2D-planar particle image velocimetry to study how honeycomb-generated turbulence is affected by a downstream grid. It is found that placing a grid near the honeycomb discharge drastically enhances flow uniformity by separating the strong jets stemming from the individual honeycomb cells into many smaller jets that are much more rapidly dissipated. The results show that using a grid reduces the integral length scale by up to a factor 10, and the axial and lateral energy spectra reveal that the grid primarily limits the energy contained in eddies with lower wave numbers. Furthermore, the grid can reduce the magnitude of peak turbulence intensity by as much as 95% and leads to a large reduction of the correlation length, as long as it is positioned upstream of the onset of the large-scale honeycomb-induced instabilities. A downstream grid is highly beneficial for both a laminar and turbulent honeycomb discharge and is most effective when there is a slight offset between the grid and honeycomb. Even though longer honeycombs generally produce more turbulence than short ones due to the larger length-scale of the shear layers, these effects are almost entirely decoupled when using a honeycomb-grid combination. Finally, a honeycomb-grid combination effectively inhibits both axial and lateral turbulence.Graphic abstract

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.