Abstract

In the analysis of regionalized data, irregular sampling patterns are often responsible for large deviations (fluctuations) between the theoretical and sample semi-variograms. This article proposes a new semi-variogram estimator that is unbiased irrespective of the actual multivariate distribution of the data (provided an assumption of stationarity) and has the minimal variance under a given multivariate distribution model. Such an estimator considerably reduces fluctuations in the sample semi-variogram when the data are strongly correlated and clustered in space, and proves to be robust to a misspecification of the multivariate distribution model. The traditional and proposed semi-variogram estimators are compared through an application to a pollution dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.