Abstract

In inverted perovskite solar cells (PSCs), the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is a widely used electron transport material. However, a high degree of energy disorder and inadequate passivation of PCBM limit the efficiency of devices, and severe self-aggregation and unstable morphology limit the lifespan of devices. Here, we design a series of fullerene dyads FP-Cn (n = 4, 8, 12) to replace PCBM as an electron transport layer, where [60]fullerene is linked with a terpyridine chelating group via a flexible alkyl chain of different lengths as a spacer. Among three fullerene dyads, FP-C8 shows the most enhanced molecule ordering and adhesion with the perovskite surface due to the balanced decoupling between the chelation effect from terpyridine and the self-assembly of fullerene, leading to lower energy disorder and higher morphological stability relative to PCBM. The FP-C8/C60-based devices using Cs0.05FA0.90MA0.05PbI2.85Br0.15 as a light absorber show a power conversion efficiency of 21.69%, higher than that of PCBM/C60 (20.09%), benefiting from improved electron extraction and transport as well as reduced charge recombination loss. When employing FAPbI3 as a light absorber, the FP-C8/C60-based devices exhibit an efficiency of 23.08%, which is the champion value of inverted PSCs with solution-processed fullerene derivatives. Moreover, the FP-C8/C60-based devices show better moisture and thermal stability than PCBM/C60-based devices and maintain 96% of their original efficiency after 1200 h of operation, while their counterpart PCBM/C60 maintains 60% after 670 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.