Abstract
In this paper, we consider traffic grooming in WDM/SONET ring networks when the offered traffic is characterized by a set of traffic matrices. Our objective is to minimize the cost of electronic add/drop multiplexers (ADMs) in the network, while being able to support any offered traffic matrix in a rearrangeably nonblocking manner. We provide several methods for reducing the required number of ADMs for an arbitrary class of traffic matrices. We then consider the special case where the only restriction on the offered traffic is a constraint on the number of circuits a node may source at any given time. For this case, we provide a lower bound on the number of ADMs required and give conditions that a network must satisfy in order for it to support the desired set of traffic patterns. Circuit assignment and ADM placement algorithms with performance close to this lower bound are provided. These algorithms are shown to reduce the electronic costs of a network by up to 27%. Finally, we discuss extensions of this work for supporting dynamic traffic in a wide-sense or strict sense nonblocking manner as well as the benefits of using a hub node and tunable transceivers. Much of this work relies on showing that these grooming problems can often be formulated as standard combinatorial optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.