Abstract
Echo state networks are a fast training variant of recurrent neural networks excelling at approximating nonlinear dynamical systems and time series prediction. These machine learning models act as nonlinear fading memory filters. While these models benefit from quick training and low complexity, computation demands from a large reservoir matrix are a bottleneck. Using control theory, a reduced size replacement reservoir matrix is found. Starting from a large, task-effective reservoir matrix, we form a controllability matrix whose rank indicates the active sub-manifold and candidate replacement reservoir size. Resulting time speed-ups and reduced memory usage come with minimal error increase to chaotic climate reconstruction or short term prediction. Experiments are performed on simple time series signals and the Lorenz-1963 and Mackey-Glass complex chaotic signals. Observing low error models shows variation of active rank and memory along a sequence of predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.