Abstract
Alkalinity stress is the main stress experienced by aquatic animals in saline-alkali water, which hinders the aquaculture development and the utilization of water resources. The two-factor (2 × 3) test was adopted to study the influence of dietary protein to carbohydrate ratios on the energy metabolism of Nile tilapia (Oreochromis niloticus) under different alkalinity stress levels. Three diets with different protein-carbohydrate ratios (P27/C35, P35/C25, and P42/C15) were fed to fish cultured in freshwater (FW, 1.3 mmol/L carbonate alkalinity) or alkaline water (AW, 35.7 mmol/L carbonate alkalinity) for 50 days. Ambient alkalinity decreased tilapia growth performance. Although ambient alkalinity caused oxidative stress and enhanced ion transport and ammonia metabolism in tilapia, tilapia fed the P27/C35 diet showed better adaptability than fish fed the other two diets in alkaline water. Further metabolomic analysis showed that tilapia upregulated all the pathways enriched in this study to cope with alkalinity stress. Under alkalinity stress, tilapia fed the P27/C35 diet exhibited enhanced pyruvate metabolism and purine metabolism compared with tilapia fed the P42/C15 diet. This study indicated that ambient alkalinity could significantly decrease growth performance and cause oxidative stress and osmotic regulation. However, reducing dietary protein content by increasing carbohydrates could weaken stress and improve growth performance, ion transport, and ammonia metabolism in tilapia under long-term hyperalkaline exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.