Abstract

BackgroundWith the challenges that dengue fever (DF) presents to healthcare systems and societies, public health officials must determine where best to allocate scarce resources and restricted budgets. Constrained optimization (CO) helps to address some of the acknowledged limitations of conventional health economic analyses and has typically been used to identify the optimal allocation of resources across interventions subject to a variety of constraints.MethodsA dynamic transmission model was developed to predict the number of dengue cases in Thailand at steady state. A CO was then applied to identify the optimal combination of interventions (release of Wolbachia-infected mosquitoes and paediatric vaccination) within the constraints of a fixed budget, set no higher than cost estimates of the current vector control programme, to minimize the number of dengue cases and disability-adjusted life years (DALYs) lost. Epidemiological, cost, and effectiveness data were informed by national data and the research literature. The time horizon was 10 years. Scenario analyses examined different disease management and intervention costs, budget constraints, vaccine efficacy, and optimization time horizon.ResultsUnder base-case budget constraints, the optimal coverage of the two interventions to minimize dengue incidence was predicted to be nearly equal (Wolbachia 50%; paediatric vaccination 49%) with corresponding coverages under lower bound (Wolbachia 54%; paediatric vaccination 10%) and upper bound (Wolbachia 67%; paediatric vaccination 100%) budget ceilings. Scenario analyses indicated that the most impactful situations related to the costs of Wolbachia and paediatric vaccination with decreases/ increases in costs of interventions demonstrating a direct correlation with coverage (increases/ decreases) of the respective control strategies under examination.ConclusionsDetermining the best investment strategy for dengue control requires the identification of the optimal mix of interventions to implement in order to maximize public health outcomes, often under fixed budget constraints. A CO model was developed with the objective of minimizing dengue cases (and DALYs lost) over a 10-year time horizon, within the constraints of the estimated budgets for vector control in the absence of vaccination and Wolbachia. The model provides a tool for developing estimates of optimal coverage of combined dengue control strategies that minimize dengue burden at the lowest budget.

Highlights

  • With the challenges that dengue fever (DF) presents to healthcare systems and societies, public health officials must determine where best to allocate scarce resources and restricted budgets

  • The dengue control strategy in Thailand is derived from World Health Organization (WHO) guidelines [3] consisting of three key elements: 1) avoiding transmission by preventing mosquito bites of people infected with dengue; 2) active community detection of non-consulting cases; and 3) vector control strategies comprising environmental management, source reduction, and chemical interventions [5]

  • Our model provides a tool for developing estimates of optimal coverage of combined dengue control strategies (Wolbachia and paediatric vaccination) that minimize dengue burden at the lowest budget

Read more

Summary

Introduction

With the challenges that dengue fever (DF) presents to healthcare systems and societies, public health officials must determine where best to allocate scarce resources and restricted budgets. The widespread prevention and control of DF is limited to the avoidance of mosquito bites and vector control measures, primarily based on insecticides and community engagement for environmental management initiatives [3]. The dengue control strategy in Thailand is derived from World Health Organization (WHO) guidelines [3] consisting of three key elements: 1) avoiding transmission by preventing mosquito bites of people infected with dengue; 2) active community detection of non-consulting cases; and 3) vector control strategies comprising environmental management, source reduction, and chemical interventions (adulticide and/ or larvicide) [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call